Roles for sphingolipid biosynthesis in mediation of specific programs of the heat stress response determined through gene expression profiling.
نویسندگان
چکیده
Previous studies have demonstrated roles for de novo production of sphingolipids in Saccharomyces cerevisiae in the regulation of the transient cell cycle arrest and nutrient permease degradation associated with the heat stress response, suggesting multiple functions for yeast sphingolipids in this response. We, therefore, sought to determine the generalized involvement of sphingolipids in the heat stress response by using microarray hybridization of RNA isolated from heat-stressed cultures of the mutant strain lcb1-100, which is unable to produce sphingolipids in response to heat. Approximately 70 genes showed differential regulation during the first 15 min of heat stress in the lcb1-100 strain compared with the wild type strain, indicating a requirement for de novo sphingolipid biosynthesis for proper regulation of these genes during heat stress. Grouping these genes into functional categories revealed several pathways, including some in which sphingolipids were previously suspected to play a role, such as stress response pathways and cell cycle regulation. Hierarchical clustering analysis revealed sphingolipid involvement in regulation of tRNA synthesis and metabolic genes and transporters. Additionally, the microarray results demonstrated novel sphingolipid involvement in transcriptional regulation of pathways of translation and cell wall organization and biogenesis. Our results demonstrate a broad-reaching effect of sphingolipids in the yeast heat stress response and suggest that the mechanism of sphingolipid involvement in several cellular pathways occurs via sphingolipid-mediated regulation of message levels.
منابع مشابه
Orm protein phosphoregulation mediates transient sphingolipid biosynthesis response to heat stress via the Pkh-Ypk and Cdc55-PP2A pathways
Sphingoid intermediates accumulate in response to a variety of stresses, including heat, and trigger cellular responses. However, the mechanism by which stress affects sphingolipid biosynthesis has yet to be identified. Recent studies in yeast suggest that sphingolipid biosynthesis is regulated through phosphorylation of the Orm proteins, which in humans are potential risk factors for childhood...
متن کاملCoordination of Rapid Sphingolipid Responses to Heat Stress in Yeast
The regulatory roles of sphingolipids in diverse cell functions have been characterized extensively. However, the dynamics and interactions among the different sphingolipid species are difficult to assess, because de novo biosynthesis, metabolic inter-conversions, and the retrieval of sphingolipids from membranes form a complex, highly regulated pathway system. Here we analyze the heat stress r...
متن کاملCloning and Expression Analysis of ZmERD3 Gene From Zea mays
Background: Stresses (such as drought, salt, viruses, and others) seriously affect plant productivity. To cope with these threats, plants express a large number of genes, including several members of ERD (early responsive to dehydration) genes to synthesize and assemble adaptive molecules. But, the function of ERD3 gene hasn’t been known so far.Objectives:</strong...
متن کاملThe optimization of Naringenin biosynthesis pathway using Yarrowia lipolitica cell culture
Yarrowia lipolytica, as a good cell factory to speed up the production of plant pharmaceutical components, has been considered to be one of the most important and attractive micro-organisms in recent years, due to its high secretion capacity, limited glycosylation, large range of genetic markers and molecular tools. Naringenin, as a central core of flavonoids production, plays important roles b...
متن کاملتجزیه ترانسکریپتوم نخود بومی ایرانی در واکنش به تنش خشکی
Chickpea (Cicer arietinum L.) is one of the most important legumes for human food and plays major roles in soil productivity. This crop is subjected to terminal drought in arid and semi-arid regions such as Iran. Identification of drought-induced genes is necessary not only for understanding molecular mechanisms of drought tolerance, but also is important to develop tolerant crops. In present s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 278 32 شماره
صفحات -
تاریخ انتشار 2003